Document Type : Review Article


1 Department of Food Science and Technology, Urmia University, Urmia, Iran

2 Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran

3 Department of Food Science and Technology, Tarbiat Modares University, Tehran, Iran

4 Department of Food Science and Technology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran


Pistachios are good sources of some functional compounds that are essential for human health. In addition to consuming dried pistachios (salted/roasted) or used as ingredients in a variety of confectionery and cookery products, consuming fresh pistachios is also gaining a foothold in the market. This review presents pre- and postharvest operations to prevent microbial contamination and to preserve physicochemical properties of fresh and processed pistachios for extending their shelf life. There is a potential in pistachios to be contaminated with some undesirable microbes, especially aflatoxin-producing fungi, during pre- and postharvest operations. In this regard, strategies to the prevention of aflatoxin production and the decontamination of produced aflatoxin in pistachios have been of interest to researchers. Different practices including sorting, thermal processing, biological control, ozone treatment, gamma irradiation, ultraviolet irradiation, and cold plasma have been proposed for aflatoxin decontamination. Sorting out damaged pistachios is one of the most important postharvest strategies to reduce aflatoxin levels (up to 98%) that can be done manually or electronically. The majority of pistachios (~85%) are consumed as roasted form that combining roasting with lemon juice improves the elimination of aflatoxin (up to 93%). Drying and packaging are the most important methods to maintain quality and improve the shelf life of pistachios. Laminated and metallized films with vacuum or modified atmosphere are the proper packaging for pistachios.


1. Arjeh E, Akhavan H-R, Barzegar M, Carbonell-Barrachina ÁA. Bio-active compounds and functional properties of pistachio hull: A review. Trends in Food Science & Technology. 2020;97:55-64.
2. FAOSTAT. Food and Agriculture Organization. Available at (Accessed 6 June 2020). 2018.
3. Tavakolipour H. Postharvest operations of pistachio nuts. Journal of Food Science and Technology. 2015;52(2):1124-30.
4. Martínez ML, Fabani MP, Baroni MV, Huaman RNM, Ighani M, Maestri DM, et al. Argentinian pistachio oil and flour: a potential novel approach of pistachio nut utilization. Journal of Food Science and Technology. 2016;53(5):2260-9.
5. USDA. U.S. Department of Agriculture, Agricultural Research Service. FoodData Central. Available at: 2019.
6. Tavakolipour H, Armin M, Kalbasi-Ashtari A. Storage stability of Kerman pistachio nuts (Pistacia vera L.). International Journal of Food Engineering. 2010;6(6):1-11.
7. Heperkan D, Aran N, Ayfer M. Mycoflora and aflatoxin contamination in shelled pistachio nuts. Journal of the Science of Food and Agriculture. 1994;66(3):273-8.
8. Set E, Erkmen O. The aflatoxin contamination of ground red pepper and pistachio nuts sold in Turkey. Food and Chemical Toxicology. 2010;48(8-9):2532-7.
9. FDA. Guidance for industry: action levels for poisonous or deleterious substances in human food and animal feed. Available at: 2000.
10. INSO. Maximum tolerated limits of mycotoxins in foods and feeds. Standard No. 5925. Iranian National Standardization Organization. 2020.
11. Cotty PJ, Jaime-Garcia R. Influences of climate on aflatoxin producing fungi and aflatoxin contamination. International Journal of Food Microbiology. 2007;119(1-2):109-15.
12. Ban G-H, Kang D-H. Effectiveness of superheated steam for inactivation of Escherichia coli O157: H7, Salmonella Typhimurium, Salmonella Enteritidis phage type 30, and Listeria monocytogenes on almonds and pistachios. International Journal of Food Microbiology. 2016;220:19-25.
13. Campbell BC, Molyneux RJ, Schatzki TF. Current research on reducing pre‐and post‐harvest aflatoxin contamination of US almond, pistachio, and walnut. Journal of Toxicology: Toxin Reviews. 2003;22(2-3):225-66.
14. Freire F, Kozakiewicz Z, Paterson R. Mycoflora and mycotoxins in Brazilian black pepper, white pepper and Brazil nuts. Mycopathologia. 2000;149(1):13-9.
15. Set E, Erkmen O. Occurrence of aflatoxins in ground red chili pepper and pistachio nut. International Journal of Food Properties. 2014;17(10):2322-31.
16. Georgiadou M, Dimou A, Yanniotis S. Aflatoxin contamination in pistachio nuts: a farm to storage study. Food Control. 2012;26(2):580-6.
17. Al-Moghazy M, Boveri S, Pulvirenti A. Microbiological safety in pistachios and pistachio containing products. Food Control. 2014;36(1):88-93.
18. Harris LJ, Lieberman V, Mashiana RP, Atwill E, Yang M, Chandler JC, et al. Prevalence and amounts of Salmonella found on raw California inshell pistachios. Journal of Food Protection. 2016;79(8):1304-15.
19. FDA. Guidance for Industry: Measures to Address the risk for contamination by salmonella species in food containing a pistachio-derived product as an ingredient. Available at: 2011.
20. Kinsella KJ, Prendergast DM, McCann MS, Blair IS, McDowell DA, Sheridan JJ. The survival of Salmonella enterica serovar Typhimurium DT104 and total viable counts on beef surfaces at different relative humidities and temperatures. Journal of Applied Microbiology. 2009;106(1):171-80.
21. Kimber MA, Kaur H, Wang L, Danyluk MD, Harris LJ. Survival of Salmonella, Escherichia coli O157: H7, and Listeria monocytogenes on inoculated almonds and pistachios stored at -19, 4, and 24 °C. Journal of Food Protection. 2012;75(8):1394-403.
22. Little C, Rawal N, De Pinna E, McLauchlin J. Survey of Salmonella contamination of edible nut kernels on retail sale in the UK. Food Microbiology. 2010;27(1):171-4.
23. Atungulu GG, Pan Z. Microbial decontamination of nuts and spices. In: Demirci A, Ngadi MO, editors. Microbial Decontamination in the Food Industry: Elsevier; 2012. p. 125-62.
24. Brandl MT. Fitness of human enteric pathogens on plants and implications for food safety. Annual Review of Phytopathology. 2006;44:367-92.
25. Foerster C, Muñoz K, Delgado-Rivera L, Rivera A, Cortés S, Müller A, et al. Occurrence of relevant mycotoxins in food commodities consumed in Chile. Mycotoxin research. 2020;36(1):63-72.
26. Abdulkadar AHW, Al-Ali A, Al-Jedah J. Aflatoxin contamination in edible nuts imported in Qatar. Food Control. 2000;11(2):157-60.
27. Juan C, Zinedine A, Molto J, Idrissi L, Manes J. Aflatoxins levels in dried fruits and nuts from Rabat-Salé area, Morocco. Food Control. 2008;19(9):849-53.
28. Cheraghali A, Yazdanpanah H, Doraki N, Abouhossain G, Hassibi M, Ali-Abadi S, et al. Incidence of aflatoxins in Iran pistachio nuts. Food and Chemical Toxicology. 2007;45(5):812-6.
29. Dini A, Khazaeli P, Roohbakhsh A, Madadlou A, Pourenamdari M, Setoodeh L, et al. Aflatoxin contamination level in Iran's pistachio nut during years 2009–2011. Food Control. 2013;30(2):540-4.
30. Fernane F, Cano-Sancho G, Sanchis V, Marin S, Ramos A. Aflatoxins and ochratoxin A in pistachios sampled in Spain: occurrence and presence of mycotoxigenic fungi. Food Additives and Contaminants. 2010;3(3):185-92.
31. Luttfullah G, Hussain A. Studies on contamination level of aflatoxins in some dried fruits and nuts of Pakistan. Food Control. 2011;22(3-4):426-9.
32. Ghali R, Belouaer I, Hdiri S, Ghorbel H, Maaroufi K, Hedilli A. Simultaneous HPLC determination of aflatoxins B1, B2, G1 and G2 in Tunisian sorghum and pistachios. Journal of Food Composition and Analysis. 2009;22(7-8):751-5.
33. Ok HE, Kim HJ, Shim WB, Lee H, Bae D-H, Chung D-H, et al. Natural occurrence of aflatoxin B1 in marketed foods and risk estimates of dietary exposure in Koreans. Journal of Food Protection. 2007;70(12):2824-8.
34. Fernane F, Sanchis V, Marin S, Ramos A. First report on mould and mycotoxin contamination of pistachios sampled in Algeria. Mycopathologia. 2010;170(6):423-9.
35. Rastegar H, Shoeibi S, Yazdanpanah H, Amirahmadi M, Khaneghah AM, Campagnollo FB, et al. Removal of aflatoxin B1 by roasting with lemon juice and/or citric acid in contaminated pistachio nuts. Food Control. 2017;71:279-84.
36. Verheecke C, Liboz T, Mathieu F. Microbial degradation of aflatoxin B1: current status and future advances. International Journal of Food Microbiology. 2016;237:1-9.
37. Pankaj S, Shi H, Keener KM. A review of novel physical and chemical decontamination technologies for aflatoxin in food. Trends in Food Science & Technology. 2018;71:73-83.
38. Hua SST. Progress in prevention of aflatoxin contamination in food by preharvest application of a yeast strain, Pichia anomala WRL‐076. In: Mendez‐Vilas A, editor. Modern Multidisciplinary Applied Microbiology: Exploiting Microbes and Their Interactions: Wiley-Blackwell; 2006. p. 322-6.
39. Siahmoshteh F, Siciliano I, Banani H, Hamidi-Esfahani Z, Razzaghi-Abyaneh M, Gullino ML, et al. Efficacy of Bacillus subtilis and Bacillus amyloliquefaciens in the control of Aspergillus parasiticus growth and aflatoxins production on pistachio. International Journal of Food Microbiology. 2017;254:47-53.
40. Afsharmanesh H, Ahmadzadeh M, Javan-Nikkhah M, Behboudi K. Improvement in biocontrol activity of Bacillus subtilis UTB1 against Aspergillus flavus using gamma-irradiation. Crop Protection. 2014;60:83-92.
41. Panahirad S, Zaare‐Nahandi F, Mohammadi N, Alizadeh‐Salteh S, Safaie N. Effects of salicylic acid on Aspergillus flavus infection and aflatoxin B1 accumulation in pistachio (Pistacia vera L.) fruit. Journal of the Science of Food and Agriculture. 2014;94(9):1758-63.
42. Fallah A, Farhoodi M, Moradi V. An assessment on aflatoxin control in pistachio‐processing units from raw material reception to packaging based on ISO 22000: 2005 model. Journal of Food Safety. 2013;33(4):379-86.
43. Shakerardekani A, Karim R, Mirdamadiha F. The effect of sorting on aflatoxin reduction of pistachio nuts. Journal of Food, Agriculture and Environment. 2012;10:459-61.
44. Afsharmanesh H, Perez-Garcia A, Zeriouh H, Ahmadzadeh M, Romero D. Aflatoxin degradation by Bacillus subtilis UTB1 is based on production of an oxidoreductase involved in bacilysin biosynthesis. Food Control. 2018;94:48-55.
45. Khorasani S, Azizi MH, Barzegar M, Hamidi‐Esfahani Z, Kalbasi‐Ashtari A. Inhibitory effects of cinnamon, clove and celak extracts on growth of Aspergillus flavus and its aflatoxins after spraying on pistachio nuts before cold storage. Journal of Food Safety. 2017;37(4):1-10.
46. Akbas MY, Ozdemir M. Effect of different ozone treatments on aflatoxin degradation and physicochemical properties of pistachios. Journal of the Science of Food and Agriculture. 2006;86(13):2099-104.
47. Ghanem I, Orfi M, Shamma M. Effect of gamma radiation on the inactivation of aflatoxin B1 in food and feed crops. Brazilian Journal of Microbiology. 2008;39(4):787-91.
48. Al-Bachir M. Microbiological, sensorial and chemical quality of gamma irradiated pistachio nut (Pistacia vera L.). The Annals of the University Dunarea de Jos of Galati Fascicle VI-Food Technology. 2014;38(2):57-68.
49. Hashemi S, Ehrampoush MH, Jalili M, Limaki SK, Hajimohammadi B. Discrimination of sensorial characteristics, fungal, and aflatoxin B1 contamination of pistachio kernels after E-beam irradiation. International Journal of Environmental Health Engineering. 2020;9:1-5.
50. Jalili M, Selamat J, Rashidi L. Effect of thermal processing and traditional flavouring mixture on mycotoxin reduction in pistachio. World Mycotoxin Journal. 2020;13(3):381-9.
51. Pignata C, D'Angelo D, Basso D, Cavallero M, Beneventi S, Tartaro D, et al. Low‐temperature, low‐pressure gas plasma application on Aspergillus brasiliensis, Escherichia coli and pistachios. Journal of Applied Microbiology. 2014;116(5):1137-48.
52. Jubeen F, Bhatti IA, Khan MZ, Zahoor-Ul H, Shahid M. Effect of UVC irradiation on aflatoxins in ground nut (Arachis hypogea) and tree nuts (Juglans regia, Prunus duclus and Pistachio vera). Journal of the Chemical Society of Pakistan. 2012;34(6):1366-74.
53. Yazdanpanah H, Mohammadi T, Abouhossain G, Cheraghali AM. Effect of roasting on degradation of aflatoxins in contaminated pistachio nuts. Food and Chemical Toxicology. 2005;43(7):1135-9.
54. Omid M, Mahmoudi A, Omid MH. An intelligent system for sorting pistachio nut varieties. Expert Systems with Applications. 2009;36(9):11528-35.
55. Farazi M, Abbas-Zadeh MJ, Moradi H, editors. A machine vision based pistachio sorting using transferred mid-level image representation of Convolutional Neural Network. 10th Iranian Conference on Machine Vision and Image Processing (MVIP); 2017.
56. Womack ED, Brown AE, Sparks DL. A recent review of non‐biological remediation of aflatoxin‐contaminated crops. Journal of the Science of Food and Agriculture. 2014;94(9):1706-14.
57. Adibian M. Aflatoxins in pistachio, detection and prevention. Journal of Novel Applied Sciences. 2016;5:27-33.
58. Farzaneh M, Shi Z-Q, Ghassempour A, Sedaghat N, Ahmadzadeh M, Mirabolfathy M, et al. Aflatoxin B1 degradation by Bacillus subtilis UTBSP1 isolated from pistachio nuts of Iran. Food Control. 2012;23(1):100-6.
59. Ranjbariyan AR, Shams-Ghahfarokhi M, Kalantari S, Razzaghi-Abyaneh M. Molecular identification of antagonistic bacteria from Tehran soils and evaluation of their inhibitory activities toward pathogenic fungi. Iranian Journal of Microbiology. 2011;3(3):140-6.
60. Razzaghi-Abyaneh M, Shams-Ghahfarokhi M, Chang P-K. Aflatoxins: mechanisms of inhibition by antagonistic plants and microorganisms. In: Guevara-Gonzalez RG, editor. Aflatoxins: Biochemistry and Molecular Biology. Intech publisher, Croatia 2011. p. 285-304.
61. Kong Q, Shan S, Liu Q, Wang X, Yu F. Biocontrol of Aspergillus flavus on peanut kernels by use of a strain of marine Bacillus megaterium. International Journal of Food Microbiology. 2010;139(1-2):31-5.
62. Ongena M, Henry G, Thonart P. The roles of cyclic lipopeptides in the biocontrol activity of Bacillus subtilis. In: Gisi U, Chet I, Gullino ML, editors. Recent Developments in Management of Plant Diseases: Springer; 2010. p. 59-69.
63. Quentin M, Besson F, Peypoux F, Michel G. Action of peptidolipidic antibiotics of the iturin group on erythrocytes: Effect of some lipids on hemolysis. Biochimica et Biophysica Acta (BBA)-Biomembranes. 1982;684(2):207-11.
64. Rahaie S, Emam‐Djomeh Z, Razavi SH, Mazaheri M. Evaluation of aflatoxin decontaminating by two strains of Saccharomyces cerevisiae and Lactobacillus rhamnosus strain GG in pistachio nuts. International Journal of Food Science & Technology. 2012;47(8):1647-53.
65. Fani SR, Moradi M, Probst C, Zamanizadeh HR, Mirabolfathy M, Haidukowski M, et al. A critical evaluation of cultural methods for the identification of atoxigenic Aspergillus flavus isolates for aflatoxin mitigation in pistachio orchards of Iran. European Journal of Plant Pathology. 2014;140(4):631-42.
66. Abbas HK, Accinelli C, Shier WT. Biological control of aflatoxin contamination in US crops and the use of bioplastic formulations of Aspergillus flavus biocontrol strains to optimize application strategies. Journal of Agricultural and Food Chemistry. 2017;65(33):7081-7.
67. Abdolshahi A, Shabani AA, Mortazavi SA, Marvdashti LM. Aflatoxin binding efficiency of Saccharomyces cerevisiae mannoprotein in contaminated pistachio nuts. Food Control. 2018;87:17-21.
68. O'Donnell C, Tiwari BK, Cullen PJ, Rice RG. Ozone in Food Processing: John Wiley & Sons; 2012.
69. WHO. Food safety and foodborne illness fact sheet No. 237. Available at: 2007.
70. FDA. Direct food substances affirmed as generally recognized as safe. Available at: 2008.
71. Savi GD, Piacentini KC, Scussel VM. Ozone treatment efficiency in Aspergillus and Penicillium growth inhibition and mycotoxin degradation of stored wheat grains (Triticum aestivum L.). Journal of Food Processing and Preservation. 2015;39(6):940-8.
72. Karaca H, Velioglu YS, Nas S. Mycotoxins: contamination of dried fruits and degradation by ozone. Toxin Reviews. 2010;29(2):51-9.
73. Jalili M. A review on aflatoxins reduction in food. Iranian Journal of Health, Safety and Environment. 2016;3(1):445-59.
74. Bashiri P, Hadad Khodaparast MH, Sedaghat N, Tabatabaei F, Nassiri Mahalati M. Effect of aqueous ozone on alfatoxin degradation in pistachio of ohadi cultivar. Iranian Food Science and Technology Research Journal. 2013;9(3):215-21.
75. Akbas MY, Ozdemir M. Effectiveness of ozone for inactivation of Escherichia coli and Bacillus cereus in pistachios. International Journal of Food Science & Technology. 2006;41(5):513-9.
76. Arjeh E, Barzegar M, Sahari MA. Effects of gamma irradiation on physicochemical properties, antioxidant and microbial activities of sour cherry juice. Radiation Physics and Chemistry. 2015;114:18-24.
77. Song WJ, Kim YH, Kang DH. Effect of gamma irradiation on inactivation of Escherichia coli O157: H7, Salmonella Typhimurium and Listeria monocytogenes on pistachios. Letters in Applied Microbiology. 2019;68(1):96-102.
78. Zare Z, Sayhoon M, Maghsoudi V. Irradiation disinfestation and decontamination of Iranian dates and pistachio nuts. Radiation Physics and Chemistry. 1993;42(1-3):301-5.
79. Jabłońska J, Mańkowska D. The influence of UV, X and microwave radiation on the aflatoxin B1 concentration in nuts. Biotechnology and Food Science. 2014;78(2):111--9.
80. Rustom IY. Aflatoxin in food and feed: occurrence, legislation and inactivation by physical methods. Food Chemistry. 1997;59(1):57-67.
81. Gecgel U, Gumus T, Tasan M, Daglioglu O, Arici M. Determination of fatty acid composition of γ-irradiated hazelnuts, walnuts, almonds, and pistachios. Radiation Physics and Chemistry. 2011;80(4):578-81.
82. Akbari M, Farajpour M, Aalifar M, Sadat Hosseini M. Gamma irradiation affects the total phenol, anthocyanin and antioxidant properties in three different persian pistachio nuts. Natural Product Research. 2018;32(3):322-6.
83. Mexis SF, Kontominas MG. Effect of gamma irradiation on the physico‐chemical and sensory properties of raw shelled peanuts (Arachis hypogaea L.) and pistachio nuts (Pistacia vera L.). Journal of the Science of Food and Agriculture. 2009;89(5):867-75.
84. García-Cela E, Marin S, Sanchis V, Crespo-Sempere A, Ramos AJ. Effect of ultraviolet radiation A and B on growth and mycotoxin production by Aspergillus carbonarius and Aspergillus parasiticus in grape and pistachio media. Fungal Biology. 2015;119(1):67-78.
85. Hosseini FS, Akhavan HR, Maghsoudi H, Hajimohammadi‐Farimani R, Balvardi M. Effects of a rotational UV‐C irradiation system and packaging on the shelf life of fresh pistachio. Journal of the Science of Food and Agriculture. 2019;99(11):5229-38.
86. Lillard D, Lantin R. Some chemical characteristics and biological effects of photomodified aflatoxins. Journal of the Association of Official Analytical Chemists. 1970;53(5):1060-3.
87. Diao E, Li X, Zhang Z, Ma W, Ji N, Dong H. Ultraviolet irradiation detoxification of aflatoxins. Trends in Food Science & Technology. 2015;42(1):64-9.
88. Kolakowska A. Lipid oxidation in food systems. In: Sikorski Z, Kolakowska A, editors. Chemical and Functional Properties of Food Lipids: CRC Press, London; 2002.
89. Misra N, Yadav B, Roopesh M, Jo C. Cold plasma for effective fungal and mycotoxin control in foods: Mechanisms, inactivation effects, and applications. Comprehensive Reviews in Food Science and Food Safety. 2019;18(1):106-20.
90. Sohbatzadeh F, Mirzanejhad S, Shokri H, Nikpour M. Inactivation of Aspergillus flavus spores in a sealed package by cold plasma streamers. Journal of Theoretical and Applied Physics. 2016;10(2):99-106.
91. Basaran P, Basaran-Akgul N, Oksuz L. Elimination of Aspergillus parasiticus from nut surface with low pressure cold plasma (LPCP) treatment. Food Microbiology. 2008;25(4):626-32.
92. Siciliano I, Spadaro D, Prelle A, Vallauri D, Cavallero MC, Garibaldi A, et al. Use of cold atmospheric plasma to detoxify hazelnuts from aflatoxins. Toxins. 2016;8(5):2-10.
93. Shi H, Cooper B, Stroshine RL, Ileleji KE, Keener KM. Structures of degradation products and degradation pathways of aflatoxin B1 by high-voltage atmospheric cold plasma (HVACP) treatment. Journal of Agricultural and Food Chemistry. 2017;65(30):6222-30.
94. Rabadán A, Gallardo-Guerrero L, Gandul-Rojas B, Álvarez-Ortí M, Pardo JE. Effect of roasting conditions on pigment composition and some quality parameters of pistachio oil. Food Chemistry. 2018;264:49-57.
95. Lambertini E, Barouei J, Schaffner DW, Danyluk MD, Harris LJ. Modeling the risk of salmonellosis from consumption of pistachios produced and consumed in the United States. Food Microbiology. 2017;67:85-96.
96. Kashani GG, Valadon LRG. Effect of salting and roasting on the carbohydrates and proteins of Iranian pistachio kernels. International Journal of Food Science & Technology. 1984;19(2):247-53.
97. Nikzadeh V, Sedaghat N. Physical and sensory changes in pistachio nuts as affected by roasting temperature and storage. American-Eurasian Journal of Agricultural & Environmental Sciences. 2008;4(4):478-83.
98. Perren R, Escher FE. Impact of roasting on nut quality. In: Harris LJ, editor. Improving the Safety and Quality of Nuts: Elsevier; 2013. p. 173-97.
99. Chang SK, Alasalvar C, Bolling BW, Shahidi F. Nuts and their co-products: The impact of processing (roasting) on phenolics, bioavailability, and health benefits–A comprehensive review. Journal of Functional Foods. 2016;26:88-122.
100. Hojjati M, Noguera-Artiaga L, Wojdyło A, Carbonell-Barrachina ÁA. Effects of microwave roasting on physicochemical properties of pistachios (Pistacia vera L.). Food Science and Biotechnology. 2015;24(6):1995-2001.
101. Rodríguez-Bencomo JJ, Kelebek H, Sonmezdag AS, Rodriguez-Alcala LM, Fontecha J, Selli S. Characterization of the aroma-active, phenolic, and lipid profiles of the pistachio (Pistacia vera L.) nut as affected by the single and double roasting process. Journal of Agricultural and Food Chemistry. 2015;63(35):7830-9.
102. Ghazzawi HA, Al-Ismail K. A comprehensive study on the effect of roasting and frying on fatty acids profiles and antioxidant capacity of almonds, pine, cashew, and pistachio. Journal of Food Quality. 2017;2017:1-8.
103. Ismail A, Gonçalves BL, de Neeff DV, Ponzilacqua B, Coppa CF, Hintzsche H, et al. Aflatoxin in foodstuffs: Occurrence and recent advances in decontamination. Food Research International. 2018;113:74-85.
104. Casulli KE, Garces-Vega FJ, Dolan KD, Ryser ET, Harris LJ, Marks BP. Impact of process temperature, humidity, and initial product moisture on thermal inactivation of Salmonella Enteritidis PT 30 on pistachios during hot-air heating. Journal of Food Protection. 2018;81(8):1351-6.
105. Kazemi A, Ostadrahimi A, Ashrafnejad F, Sargheini N, Mahdavi R, Farshchian M, et al. Mold contamination of untreated and roasted with salt nuts (walnuts, peanuts and pistachios) sold at markets of Tabriz, Iran. Jundishapur Journal of Microbiology. 2014;7(1):1-6.
106. Mokhtarian M, Tavakolipour H, Ashtari AK. Effects of solar drying along with air recycling system on physicochemical and sensory properties of dehydrated pistachio nuts. LWT - Food Science and Technology. 2017;75:202-9.
107. Kashani Nejad M, Tabil L, Mortazavi A, Safe Kordi A. Effect of drying methods on quality of pistachio nuts. Drying Technology. 2003;21(5):821-38.
108. Shakerardekani A, Karim R, Ghazali HM, Chin NL. Types of dryers and their effect on the pistachio nuts quality-a Review. Journal of Agricultural Science. 2011;3(4):13-21.
109. Gazor HR, Minaei S. Influence of temperature and air velocity on drying time and quality parameters of pistachio (Pistacia vera L.). Drying Technology. 2005;23(12):2463-75.
110. Amiri Chayjan R, Bahrabad SMT, Rahimi Sardari F. Modeling infrared‐covective drying of pistachio nuts under fixed and fluidized bed conditions. Journal of Food Processing and Preservation. 2014;38(3):1224-33.
111. Kouchakzadeh A, Shafeei S. Modeling of microwave-convective drying of pistachios. Energy Conversion and Management. 2010;51(10):2012-5.
112. Mokhtarian M, Tavakolipour H, Kalbasi-Ashtari A. Energy and exergy analysis in solar drying of pistachio with air recycling system. Drying Technology. 2016;34(12):1484-500.
113. Balbay A, Şahin Ö, Ülker H. Modeling of convective drying kinetics of pistachio kernels in a fixed bed drying system. Thermal Science. 2013;17(3):839-46.
114. Shakerardekani A, Karim R. Effect of different types of plastic packaging films on the moisture and aflatoxin contents of pistachio nuts during storage. Journal of Food Science and Technology. 2013;50(2):409-11.
115. Arrus K, Blank G, Abramson D, Clear R, Holley R. Aflatoxin production by Aspergillus flavus in Brazil nuts. Journal of Stored Products Research. 2005;41(5):513-27.
116. Sajilata MG, Savitha K, Singhal RS, Kanetkar VR. Scalping of flavors in packaged foods. Comprehensive Reviews in Food Science and Food Safety. 2007;6(1):17-35.
117. Raei M, Mortazavi A, Pourazarang H. Effects of packaging materials, modified atmospheric conditions, and storage temperature on physicochemical properties of roasted pistachio nut. Food Analytical Methods. 2010;3(2):129-32.
118. Maskan M, Karataş Ş. Storage stability of whole-split pistachio nuts (Pistachia vera L.) at various conditions. Food Chemistry. 1999;66(2):227-33.
119. Ozturk I, Sagdic O, Yalcin H, Capar TD, Asyali MH. The effects of packaging type on the quality characteristics of fresh raw pistachios (Pistacia vera L.) during the storage. LWT-Food Science and Technology. 2016;65:457-63.
120. Shayanfar S, Kashaninejad M, Khomeiri M, Emam-Djomeh Z, Mostofi Y. Effect of MAP and different atmospheric conditions on the sensory attributes and shelf life characteristics of fresh pistachio nuts. Journal of Nuts. 2011;2(3):47-57.
121. Maskan M, Karataş Ş. Fatty acid oxidation of pistachio nuts stored under various atmospheric conditions and different temperatures. Journal of the Science of Food and Agriculture. 1998;77(3):334-40.
122. Scussel VM, Giordano BN, Simao V, Manfio D, Galvao S, Rodrigues MNF. Effect of oxygen-reducing atmospheres on the safety of packaged shelled Brazil nuts during storage. International Journal of Analytical Chemistry. 2011;2011:1-9.
123. Sheikhi A, Mirdehghan SH, Arab MM, Eftekhari M, Ahmadi H, Jamshidi S, et al. Novel organic-based postharvest sanitizer formulation using Box Behnken design and mathematical modeling approach: A case study of fresh pistachio storage under modified atmosphere packaging. Postharvest Biology and Technology. 2020;160:111047.
124. Gheysarbigi S, Mirdehghan SH, Ghasemnezhad M, Nazoori F. The inhibitory effect of nitric oxide on enzymatic browning reactions of in-package fresh pistachios (Pistacia vera L.). Postharvest Biology and Technology. 2020;159:110998.
125. Hashemi M, Dastjerdi AM, Shakerardekani A, Mirdehghan SH. Effect of alginate coating enriched with Shirazi thyme essential oil on quality of the fresh pistachio (Pistacia vera L.). Journal of Food Science and Technology. 2021;58:34–43.
126. Molamohammadi H, Pakkish Z, Akhavan H-R, Saffari VR. Effect of salicylic acid incorporated chitosan coating on shelf life extension of fresh in-hull pistachio fruit. Food and Bioprocess Technology. 2020;13(1):121-31.
127. Shakerardekani A, Hashemi M, Mirzaalian Dastjerdi A. Effect of Arabic gum coating enriched with Shirazi thyme essential oil on quality characteristics of fresh pistachio (Pistacia vera L cv. Ahmad-Aghaghi). Food Science and Technology. 2019;16(87):113-26.
128. Salehi-Fathabadi Z, Maghsoudlou Y, Akhavan H, Moayedi A, Khorasani S. The assessment of the effect of Aloe vera gel coating containing salicylic acid and thyme extract on the shelf life of fresh pistachios during storage. Food Science and Technology. 2019;16(86):297-312.
129. Sheikhi A, Mirdehghan SH, Karimi HR, Ferguson L. Effects of passive-and active-modified atmosphere packaging on physio-chemical and quality attributes of fresh in-hull pistachios (Pistacia vera L. cv. Badami). Foods. 2019;8(564):1-15.
130. Sheikhi A, Mirdehghan SH, Ferguson L. Extending storage potential of de‐hulled fresh pistachios in passive‐modified atmosphere. Journal of the Science of Food and Agriculture. 2019;99(7):3426-33.
131. Waghmare R, Annapure U. Combined effect of chemical treatment and/or modified atmosphere packaging (MAP) on quality of fresh-cut papaya. Postharvest Biology and Technology. 2013;85:147-53.
132. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010;33(1): 62–9.
133. WHO. World Health Organization: Health topics, Diabetes. 2014.
134. IDF. International Diabetes Federation: IDF Diabetes Atlas. 2015.
135. Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiological Reviews. 2013;93(1):137-88.
136. Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS,
Pedersen BK, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 2010;5(2): e9085.
137. Musso G, Gambino R, Cassader M. Obesity, diabetes, and gut microbiota: the hygiene hypothesis expanded?. Diabetes Care. 2010;33(10):2277-84.
138. Ejtahed HS, Soroush AR, Angoorani P, Larijani B, Hasani-Ranjbar S. Gut microbiota as a target in the pathogenesis of metabolic disorders: A new approach to novel therapeutic agents. Hormone and Metabolic Research. 2016;48(6):349-58.
139. Kechagia M, Basoulis D, Konstantopoulou S, Dimitriadi D, Gyftopoulou K, Skarmoutsou N, et al. Health benefits of probiotics: a review. ISRN Nutrition 2013;2013:481651.
140. Vergin, F. Antibiotics and probiotics. Hipokrates. 1954;25:116–9.
141. Food and Agriculture Organization of the United Nations, issuing body. World Health Organization, issuing body. Probiotics in food: health and nutritional properties and guidelines for evaluation.
142. Markowiak P, Slizewska K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients. 2017;9(9):1021.
143. Moroti C, Magri LFS, de Rezende Costa M, Cavallini DC, Sivieri K. Effect of the consumption of a new symbiotic shake on glycemia and cholesterol levels in elderly people with type 2 diabetes mellitus. Lipids in Health and Disease. 2012;11(1):29.
144. Kavitha K, Reddy AG, Reddy KK, Kumar CS, Boobalan G, Jayakanth K. Hypoglycemic, hypolipidemic and antioxidant effects of pioglitazone, insulin and synbiotic in diabetic rats. Veterinary World. 2016;9(2):118.
145. Rajkumar H, Kumar M, Das N, Kumar SN, Challa HR, Nagpal R. Effect of probiotic Lactobacillus salivarius UBL S22 and prebiotic fructo-oligosaccharide on serum lipids, inflammatory markers, insulin sensitivity, and gut bacteria in healthy young volunteers: a randomized controlled single-blind pilot study. Journal of Cardiovascular Pharmacology and Therapeutics. 2015;20(3):289–98.
146. Asemi Z, Khorrami-Rad A, Alizadeh S-A, Shakeri H, Esmaillzadeh A. Effects of synbiotic food consumption on metabolic status of diabetic patients: a double-blind randomized cross-over controlled clinical trial. Clinical Nutrition. 2014;33(2):198–203.
147. Nikbakht E, Khalesi S, Singh I, Williams LT, West NP, Colson N. Effect of probiotics and synbiotics on blood glucose: a systematic review and meta-analysis of controlled trials. European Journal of Nutrition. 2018;57(1):95–106.
148. Eslamparast T, Zamani F, Hekmatdoost A, et al. Effects of synbiotic supplementation on insulin resistance in subjects with the metabolic syndrome: a randomised, double-blind, placebo-controlled pilot study. British Journal of Nutrition. 2014;112(3):438–45.
149. Tajadadi-Ebrahimi M, Bahmani F, Shakeri H, et al. Effects of daily consumption of synbiotic bread on insulin metabolism and serum high-sensitivity C-reactive protein among diabetic patients: a double-blind, randomized, controlled clinical trial. Annals of Nutrition and Metabolism. 2014;65(1):34–41.
150. Shakeri H, Hadaegh H, Abedi F, Tajabadi-Ebrahimi M, Mazroii N, Ghandi Y, Asemi Z. Consumption of synbiotic bread decreases triacylglycerol and VLDL levels while increasing HDL levels in serum from patients with type-2 diabetes. Lipids. 2014;49(7):695–701.
151. Asemi Z, Alizadeh S-A, Khorshidi A, Goli M, Esmaillzadeh A. Effects of beta-carotene fortified synbiotic food on metabolic control of patients with type 2 diabetes mellitus: A double-blind randomized cross-over controlled clinical trial. Clinical Nutrition. 2016;35(4):819-25.
152. Ahmadi S, Jamilian M, Tajadadi-Ebrahimi M, Jafari P, Asemi Z. The effects of synbiotic supplementation on markers of insulin metabolism and lipid profiles in gestational diabetes: a randomised, double-blind, placebo-controlled trial. British Journal of Nutrition. 2016;116:1394–401.
153. Tajabadi-Ebrahimi M, Sharifi N, Farrokhian A, Raygan F, Karamali F, Razzaghi R, Taheri S, Asemi Z. A randomized controlled clinical trial investigating the effect of synbiotic administration on markers of insulin metabolism and lipid profiles in overweight type 2 diabetic patients with coronary heart disease. Experimental and Clinical Endocrinology & Diabetes. 2016;125(01):21–7.
154. Ebrahimi Z, Nasli-Esfahani E, Nadjarzade A, Mozaffarikhosravi H. Effect of symbiotic supplementation on glycemic control, lipid profiles and microalbuminuria in patients with non-obese type 2 diabetes: a randomized, double-blind, clinical trial. Journal of Diabetes & Metabolic
Disorders. 2017;16(1):23.
155. Razmpoosh E, Javadi A, Ejtahed HS, Mirmiran P, Javadi M, Yousefinejad A, The effect of probiotic supplementation on glycemic control and lipid profile in patients with type 2 diabetes: A randomized placebo-controlled trial. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2019;13(1):175-82.
156. Nabhani Z, Hezaveh S.J.G, Razmpoosh E, Asghari-Jafarabadi M, Gargari B. The effects of synbiotic supplementation on insulin resistance/sensitivity, lipid profile and total antioxidant capacity in women with gestational diabetes mellitus: a randomized double-blind placebo-controlled clinical trial. Diabetes Research and Clinical Practice. 2018;138:149-57.
157. Soleimani A, Motamedzadeh A, Mojarrad MZ, Bahmani F, Amirani E, Ostadmohammadi V, Tajabadi-Ebrahimi M, Asemi Z. The effects of synbiotic supplementation on metabolic status in diabetic patients undergoing hemodialysis: A randomized, double-Blinded, placebo-controlled trial. Probiotics and Antimicrobial Proteins. 2019;11(4):1248–56.
158. Zare Javid A, Aminzadeh M, Haghighi-zadeh M.H, Jamalvandi M. The Effects of synbiotic supplementation on glycemic status, lipid profile, and biomarkers of oxidative stress in type 1 diabetic patients: A placebo-controlled, double-blind, randomized clinical trial. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 2020;13: 607–17.
159. Mohammadi H, Miraghajani M, Ghaedi E. Efficacy of synbiotic supplementation in patients with nonalcoholic fatty liver disease: a systematic review and meta-analysis of clinical trials: Synbiotic supplementation and NAFLD. Critical Reviews in Food Science and Nutrition. 2019;59(15):2494-505.
160. De Vrese M, Schrezenmeir AJ. Probiotics, prebiotics, and synbiotics.  Advances in Biochemical Engineering / Biotechnology. 2008;111:1-66.           
161. Konstantinov SR, Smidt H, de Vos WM, Bruijns SC, Singh SK, Valence F, Molle D, Lortal S, Altermann E, Klaenhammer TR, Van Kooyk Y (2008) S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(49):19474–79.
163. Ouwehand AC, Tiihonen K, Saarinen M, Putaala H, Rautonen N. Influence of a combination of Lactobacillus acidophilus NCFM and lactitol on healthy elderly: intestinal and immune parameters. British Journal of Nutrition. 2008;101(3):367–75.
164. Brubaker SW, Bonham KS, Zanoni I, Kagan JC. Innate immune pattern recognition: a cell biological perspective. Annual Review of Immunology. 2015;33:257–90.
165. Dasu MR, Devaraj S, Park S, Jialal I. Increased toll-like receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects. Diabetes Care. 2010;33(4):861–68.
166. Kimoto H, Ohmomo S, Okamoto T. Cholesterol removal from media by Lactococci. Journal of Dairy Science. 2002;85(12):3182–3188.
167. Lye H-S, Rusul G, Liong M-T. Removal of cholesterol by Lactobacilli via incorporation and conversion to coprostanol. J Dairy Sci. 2010;93(4):1383–92.
168. Begley M, Hill C, Gahan CG. Bile salt hydrolase activity in probiotics. Applied and Environmental Microbiology. 2006;72(3):1729–38.
169. Patel AK, Singhania RR, Pandey A, Chincholkar SB. Probiotic bile salt hydrolase: current developments and perspectives. Applied Biochemistry and Biotechnology. 2010;162(1):166–80. 
170. De Preter V, Vanhoutte T, Huys G, Swings J, De Vuyst L, Rutgeerts P, Verbeke K. Effects of Lactobacillus casei Shirota, Bifidobacterium breve, and oligofructose-enriched inulin on colonic nitrogen-protein metabolism in healthy humans. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2007;292(1):358–68.
171. Zhuang G, Liu X-M, Zhang Q-X, Tian F-W, Zhang H, Zhang H-P, Chen W. Research advances with regards to clinical outcome and potential mechanisms of the cholesterol-lowering effects of probiotics. Journal of Clinical Lipidology. 2012;7(5):501–7.
172. Leung C, Rivera L, Furness JB, Angus PW. The role of the gut microbiota in NAFLD. Nature Reviews Gastroenterology & Hepatology. 2016;13(7):412.
173. Lee J, Hong S-W, Rhee E-J, Lee W-Y. GLP-1 receptor agonist and non-alcoholic fatty liver disease. Diabetes & Metabolism Journal. 2012;36(4):262–7.
174. Campbell  JE,  Drucker  DJ. Pharmacology, physiology, and mechanisms  of incretin hormone action. Cell Metabolism. 2013;17(6):819–837.
175. Wojdemann M, Wettergren A, Sternby B, Holst JJ, Larsen S, Rehfeld JF, Olsen O. Inhibition of human gastric lipase secretion by glucagon-like peptide-1. Digestive Diseases and Sciences. 1998;43(4):799–05.